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Influence of Conductor Shields on the Q-Factors
of a TEO Dielectric Resonator

YOSHIO KOBAYASHI, ~MBER, IEEE, TAKAYUKI AOKI, AND YUKIMASA KABE

Abstract —Two approaches due to the complex frequency and to the

perturbation theory are described to compute accurately the Q-factors of

the circularly-symmetric TEO modes for dielectric rod resonators placed

between two parallel couductor plates and in a conductor cavity. These

techniques allow us to estimate separately the Q-factors ihse to radiation,

conductor, and dielectric losses from only the computation of resonant

frequencies by means of the mode-matchiug method. VNldity of the

theories is verified by experiments. The influeuce of the conductor shields

on the Q-factors is discussed from the computed results. A possibility of

reatizing high-Q dielectric resonators is suggested.

I. INTRODUCTION

D IELECTRIC RESONATORS widely used in micro-

wave circuits are placed in conductor shields to pre-

vent radiation loss. For the circularly-symmetric TE o modes

of such shielded dielectric resonators, the analyses of Q-

factors have been treated by several authors [1]-[6]. As the

first approach, following the definition Q = tiJV/P, where

u is the resonant angular frequency, we calculate the

energy stored W and the average power dissipated P in a

resonator. However, the rigorous theory for these reso-

nators is quite involved because the exact field expressions

are very complicated [1]; therefore, simplifying approxima-

tions are considered [2], [3]. In another approach, the

complex frequency is introduced into characteristic equa-

tions, to determine the resonant frequencies and the Q-fac-

tors simultaneously. An example for the computation of

Q-factors due to radiation loss QIa~ by this method has

been shown in [4]. In a similar way, a technique of comput-

ing one due to conductor loss QC and one due to the

dielectric loss Qd has been presented by Maj and Modelski

[5]. However, their procedure for the Q, computation, in

which a conductor layer is considered in the conductor

wall, appears to be rather complicated. The third approach

based on the perturbation of cavity walls has been pre-

sented, by Kajfez [6], to compute QC. This is an excellent

method since Q= can be determined from only the compu-

tation of resonant frequencies. Unfortunately, a similar

analysis for Qd has ~not been treated so far.

In this paper, based on the mode-matching method
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useful for the accurate computation of resonant frequen-

cies [7], [8], two approaches due to the complex frequency

and to the perturbation theory are described to accurately

compute the Q-factors of the TEO modes for resonator

structures shown in Fig. 1. In the former approach, the

proper locations of roots on a complex plane are discussed.

In the latter, the extension of Kajfez’s method to the Qd

computation is realized by means of the cavity-material

perturbation. These techniques allow us to estimate sep-

arately the influence of the conductor shields on the Q,ad,

QC, ‘ad Qd values. Validity of the theories is verified by

experiments.

II. ANALYSIS

A. Analysis by Complex Frequency Technique

Consider three types of shielded dielectric rod resonators

shown in Fig. 1. A dielectric rod of relative permittivit y c,,

relative permeability p,= 1, and diameter D is placed

between two parallel conductor plates as in Fig. l(a) or (b),

or in the center of a conductor cavity of diameter d and

length 2,h as in Fig. l(c). They are called parallel-plates-

image, parallel-plates-open, and cavity-open types, respec-

tively. The conductor and, dielectric are supposed to be

lossless first.

The TEO modes for the structure in Fig. l(b) are analyzed

by means of the mode-matching method. From the struc-

tural symmetry, the resonant modes can be classified into

ones for which the T-plane (rO-plane at z = O) is an electric

wall and the others for which it is a magnetic wall. The

electric T-plane modes also correspond to the one for the

structure in Fig. l(a). The resonator is divided into homo-

geneous subregions I, II, and III. The electromagnetic

fields in each subregion are expanded in eigenmodes which

satisfy the boundary conditions on the conductor surface

and the T-planei Then, imposing the boundary condition

at the interfaces of the subregions and applying the ortho-

gonality of the eigenmodes, we get the homogeneous equa-

tions for the expansion coefficients. The resonant frequen-

cies are determined by the condition that the determinant

of the coefficient matrix vanishes [7]; that is,

det H=O (1)

where the matrix element h ~P (q, P=l,2,. ”., N) is given
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Fig. 1. Configurations of shielded dielectric rod resonators of three
types, i.e., (a) paraflel-plates-image type, (b) parallel-plates-open type,
and (c) cavity-open t~e.
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In the above, the first and second expressions in { }

correspond to the electric and magnetic T-plane modes,

respectively. A time factor eJ’”2 is tacitly assumed. AIso, c

is the light velocity in a vacuum, Jn (X ) is the Bessel

function of the first kind, and H.(x) is the Hankel func-

tion of the second kind. For up in (4), a plus sign of the

square root is chosen since the term consisting of J.( up ) in

(2) is an even function for up, while the choice of the plus
or minus signs for Up in (5) will be discussed later. Further-

more, ( Xp, Yp) is given as the p th solution of the following

simultaneous equations:

{-xcotx, xtax}=:Ycot Y

(:)2-(;)2=(;)2(%-1). (7)

To compute the Qd and Q1,~ values as well as the

resonant frequencies, we introduce the complex angular

frequency

h = ml + ju2 fl = 01/27r Qf = ul/2a2 (8)

and the complex relative permittivit y

i,=t, (l–jtan~) (9)

into (l), where fl and Qf are the resonant frequency and

Q-factor for a damped-free oscillation, respectively, and

tan 8 is the loss tangent of the dielectric. Then, putting

.O~= v~l + jv~2, we get

(~1~2/c2)-(”,l”q2/~2) = o (lo)

from the imaginary part of u; in (5). Since til and W2 are

both positive, u~l and v~z are both positive or both nega-

tive, as seen from (10); that is, the roots ti~ exist in either

the first or third quadrant of a complex u plane. Further-

more, the fields outside the rod behave as

since H.(x) = (2/~x)112exp ( – jx + j(2n +1) m/4) for 1

<< x ( = ti~i ). Some considerations of (11) result in the
following: the first quadrant corresponds to a leaky region,

where the fields propagate in the positive r-direction, while

the third quadrant corresponds to a trapped region, where

they propagate in the negative r-direction. For U~ in (5),

thus, we choose the plus sign when {h/q, 2h /(2q – 1)} >

Ao/2 and the minus sign when { h/q,2h/(2q – 1)} <

Ao/2, where A. ( = c/fl) is the resonant wavelength.

Thus, when {h, 2h } > A 0/2, at least one of the roots U~

is in the first quadrant; the resonant mode is in the leaky

state, where a part of energy leaks away from the resonator

in the radial direction [7]. On the other hand, when {h, 2h }

< A 0/2, Uqfor any q value is always in the third quadrant;

the resonant mode is in the trapped state, where the energy

is trapped in and near the rod without radiation [7].

Particularly, the case of {h, 2h } = Ao/2 represents a cutoff

of the trapped state.

B. Analysis by Perturbation Technique

The technique due to the perturbation theory described

here allows us to separately estimate the QC and Qd values

from only the computation of resonant frequencies for

structures without radiation. Then consider the real numb-

ers for all variables in (l)-(7), such as u and e,. For the
parallel-plates-type resonators in Fig. l(a) and (b), the TEO

mode is in the trapped state when {h, 2h } < A o/2, as

described above. In this case, the term containing the

Hankel functions in (2) is modified as follows:

(12)

since v, = — j“u~ for any q value, where K.(x) is the

modified Bessel function of the second kind. Furthermore,

for the cavity-open-type resonator in Fig. l(c), the follow-

ing exchange in (2) is needed [7]:

(13)

where S = a/R = d/D and 1.(x) is the modified Bessel

function of the first kind.
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Following Kajfez’s method, we can compute the Q,

values from

for Fig. l(a), (b),

111
_—

Q. - Q.. ‘El

121

Qc=~+Qcy

and (c), respectively, where

fo ‘
Q’” =(- AjO/AM)t3C

fo

‘c’ = ( - Afo/AL)6c

fo
Q., = (- Afo/Ad)2/ic

(14)

(15)

and Q,u, Q.l, and Q,Y are ones due to the conductor losses
of the upper and lower plates and of the cylinder, respec-

tively. The resonant frequency f. and the frequency shift

AfO due to the cavity-wall perturbation, such as AM, AL,

or Ad, can accurately be computed from (l). Also, 8C=

(7TfoprJ) – 1/2 is the skin depth of the conductor, where p is

its permeability and u is its conductivity.

In the foIlowing, we derive a formula for Q~ from the

cavity-material perturbation. Consider a cavity filled par-

tially with dielectric. From the definition of Qd, at first, we

obtain

(16)

since W = 2( Wd + W.) and Pd = 2 tiwd tan & where W~

and W. are the electric energy stored in the dielectric and

in the air, respectively, and P~ is the average power dis-

sipated in the dielectric. Then, applying a formula for

cavity-material perturbations [9] to this cavity, we obtain

AfO A<, W*
——

f. = 26, Wd+ Wa
(17)

from the frequency shift A f. due to the dielectric perturba-

tion Ac, only. Hence, substituting (17) into (16) yields the

following formula for Qd:

1 fo
Qd=—

tan~ (– AfO/Ac,)2~,
(18)

where the value of – A f. /Ac, also can be computed accu-
rately from (l). Note that (18) is valid for all modes

including the hybrid modes. With (14) and (18), thus, the

unloaded Q, Q., is given by

(19)
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Fig. 2. Locations of LIq for the parallel-plates-image-type resonator in
Fig. 3, as M is varied.
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Fig. 3. Computed results of complex frequencies (.fl, Qf) ad measured
results (f., QU) for the TEOI(I +~),z mode of the parallel-plates-image-
type resonator.

III. COMPUTATIONS AND EXPERIMENTS FOR

PARALLEL-PLATES-TYPE RESONATORS

To verify the validity of these theories, we performed the

computations and experiments for the parallel-plates-type

resonators, using a (Zr. Sn)Ti04 ceramic rod with e, = 37.43

and tan ~ = (0.205+ 0.170fo[GHz]) X 10-4 (Murata Mfg.

Co., Ltd.) and two copper plates with the relative conduc-

tivity of ii= u/u. = 0.92, where U.= 58 X 106 S/m is the ~

conductivity of the international standard annealed copper.
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Fig. 4. Computed results of complex frequencies (~1, Qf ) ~d measured
results (j_., Q.) for the TEOI$ mode of the parallel-plates-open-type
resonator:

These values were measured by a dielectric rod resonator

method [10].

At first, the complex frequencies versus the distance M

were COmPUted for the TEo1 G+ ~VZ mode of the parallel-
plates-image-type resonator in Fig. l(a). Fig. 2 shows the

locations of v~ in the complex u plane. At M =10 mm, all

~~ values lie in the third quadrant (Fig. 2(a)). As M

increases and h becomes greater than A o/2, only 01 moves

into the first quadrant (Fig. 2(b)). The number of u~’s in

this quadrant increases with M (Fig. 2(c)). The computed

results are shown in Fig. 3 by solid lines. Similar results for

the TE018 mode of the parallel-plate-open-type resonator
are also shown in Fig. 4. Broken lines in both figures show

the cutoffs. The left-hand side of the cutoff is the trapped

state region while the right-hand side is the leaky state
region. When M passes through the cutoff, the QJ values

rapidly decrease owing to the radiation loss. In Fig. 3,
particularly, a gentle peak of Qf appears near the transi-

tion of U2 from the trapped to leaky region. Also, Fig. 5

shows the convergence of the solutions for these resonators

versus the number N of the determinant. The solutions to

three significant figures can be obtained when N =15 for

Fig. 5(a) and N= 7 for Fig. 5(b).

The dots in Figs. 3 and 4 indicate the measured values.

An experimental procedure taken is similar to that de-

scribed in [10]. In both cases, the theoretical ~1 curves

i
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Fig. 5. Convergence of complex frequencies (~1, Qf ) for (a) the
paraflel-plates-image-type resonators in Fig. 3 and for (b) the parallel-
plates-open-type resonator in Fig. 4.

10000 ,
!Qc.

Fig. 6. Computed Q values due to the perturbation theory and mea-
sured Qti values for the trapped state TEOI (l+ ~),z mode of the
parallel-plates-image-type resonator,

agree very well with the measured to values. The theoret-

ical Qf curves in the trapped state, which actually means
Qd, are greater than the measured QU values because the

conductor is supposed to be lossless in this analysis. On the

other hand, the Qf curves in the leaky state, which consist

of Qd and Q,a~, agree well with the measured Q. values

because the radiation loss is predominant.

For the same structures as used above, then, the QC, Qd,

and QU values in the trapped state were computed using

the perturbation technique, that is, from (14), (18), and

(19). The respective results are shown in Figs. 6 and 7,
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Fig. 7. Computed Q values due to the perturbation theory and mea-
sured QU values for the trapped state TEola mode of the paraflel-

plates-open-type resonator.

where the computed jO curves are omitted since they are

identical with the jl curves given in Figs. 3 and 4. The Qd

values computed from (18) agree to within 0.05 percent

with the computed Qf values in the trapped states in Figs.

3 and 4. The QC values increase rapidly with increasing M.

Also, the computed QU curves agree well with the measured

QU values which are reproductions of those in Figs. 3 and

4. Thus, validity of these two techniques was verified.

IV. POSSIBILITY OF HIGH-Q DIELECTRIC

I&sONATORs

Finally, for the TEO1a mode of the cavity-open-type

resonator in Fig. l(c), the computed results are shown in

Fig. 8. In this computation, we used the optimum dimen-

sions to otitain the best separation of higher order modes

[8]. The ~0 curve was computed from (1) and the Q curves

were computed by means of the perturbation technique

when E =1.0 (copper), and tan 8 = 10’4 and 10-5. When

e,= 37.5 and D =10 mm, the optimum values are 2L = 4.19

mm, M“ = 5.26 mm, and d = 27.0 mm, and then we get

f.= 5.37 GHz. In this case, we obtain Qd tantl = 1.026 and

QC=1.30X105 since QCU= 3.40 X 105 and QCY= 5.54 X

105. Thus, we obtain QU = 9520 for tanil = 10-4 and also

Qu = 57000 for tana = 10-5. For a TEOI1 empty cavity, on
the other hand, the theoretical maximum QU value, at-

tained when d = 2h, is 41000 at f.= 5.4 GHz. As a result,

if low-loss materials with tan 6 of nearly 10-5 are devel-

oped, shielded dielectric resonators will realize the QU

values higher than those of conductor cavities.

V. CONCLUSION

It is concluded that the two approaches piesented are

effective for the separate, accurate estimation of Q-factors

due to the radiation, conductor, and dielectric losses for

\ /
\y

106 - \

o 1(F

,o”o~
20

M (mm)

Fig. 8. Computed Q values due to the perturbation theory for the
TE018 mode of the cavity-open-type resonator.

the circulady-symmetric TEO modes of the shielded dielec-

tric resonators. The computed results show that the Q-value

due to the conductor loss increases rapidly as the conduc-

tor is moved away from the dielectric. As a result, a

possibility of ,realizing high-Q dielectric resonators in the

microwave region was suggested. In addition, a practical

application for such resonators in the millimeter-wave re-

gion also can be expected as suggested by Dydyk [11].
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