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Influence of Conductor Shields on the Q-Factors
of a TE, Dielectric Resonator

YOSHIO KOBAYASHI, MEMBER, 1EEE, TAKAYUKI AOKI, aND YUKIMASA KABE

Abstract —Two approaches due to the complex frequency and to the
perturbation theory are described to compute accurately the Q-factors of
the circularly-symmetric TE, modes for dielectric rod resonators placed
between two parallel conductor plates and in a conductor cavity. These
techniques allow us to estimate separately the Q-factors due to radiation,
conductor, and dielectric losses from only the computation of resonant
frequencies by means of the mode-matching method. Validity of the
theories is verified by experiments. The influence of the conductor shields
on the Q-factors is discussed from the computed results. A possibility of
realizing high-Q dielectric resonators is suggested.

I. INTRODUCTION

IELECTRIC RESONATORS widely used in micro-
wave circuits are placed in conductor shields to pre-
vent radiation loss. For the circularly-symmetric TE, modes
of such shielded dielectric resonators, the analyses of Q-
factors have been treated by several authors [1]-[6]. As the
first approach, following the definition Q = wW /P, where
w is the resonant angular frequency, we calculate the
energy stored W and the average power dissipated P in a
resonator. However, the rigorous theory for these reso-
nators is quite involved because the exact field expressions
are very complicated [1}; therefore, simplifying approxima-
tions are comsidered [2], [3]. In another approach, the
complex frequency is introduced into characteristic equa-
tions, to determine the resonant frequencies and the Q-fac-
tors simultaneously. An example for the computation of
Q-factors due to radiation loss Q.4 by this method has
been shown in [4]. In a similar way, a technique of comput-
ing one due to conductor loss @, and one due to the
dielectric loss Q, has been presented by Maj and Modelski
[5]. However, their procedure for the Q. computation, in
which a conductor layer is considered in the conductor
wall, appears to be rather complicated. The third approach
based on the perturbation of cavity walls has been pre-
sented, by Kajfez [6], to compute Q.. This is an excellent
method since Q, can be determined from only the compu-
tation of resonant frequencies. Unfortunately, a similar
analysis for 0, hasnot been treated so far.
In this paper, based on the mode-matching method
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useful for the accurate computation of resonant frequen-
cies [7], [8], two approaches due to the complex frequency
and to the perturbation theory are described to accurately
compute the Q-factors of the TE, modes for resonator
structures shown in Fig. 1. In the former approach, the
proper locations of roots on a complex plane are discussed.
In the latter, the extension of Kajfez’s method to the Q,
computation is realized by means of the cavity-material
perturbation. These techniques allow us to estimate sep-
arately the influence of the conductor shields on the Q.
Q., and Q, values. Validity of the theories is verified by
experiments. ‘

II. ANALYSIS

A. Analysis by Complex Frequency Technique

Consider three types of shielded dielectric rod resonators
shown in Fig. 1. A dielectric rod of relative permittivity e,,
relative permeability g, =1, and diameter D is placed
between two parallel conductor plates as in Fig. 1(a) or (b),
or in the center of a conductor cavity of diameter d and
length 24 as in Fig. 1(c). They are called parallel-plates-
image, parallel-plates-open, and cavity-open types, respec-
tively. The conductor and dielectric are supposed to be
lossless first.

The TE, modes for the structure in Fig. 1(b) are analyzed
by means of the mode-matching method. From the struc-
tural symmetry, the resonant modes can be classified into
ones for which the T-plane (rf-plane at z = 0) is an electric
wall and the others for which it is a magnetic wall. The
electric T-plane modes also correspond to the one for the
structure in Fig. 1(a). The resonator is divided into homo-
geneous subregions I, II, and III. The electromagnetic
fields in each subregion are expanded in eigenmodes which
satisfy the boundary conditions on the conductor surface
and the T-plane‘. Then, imposing the boundary condition
at the interfaces of the subregions and applying the ortho-
gonality of the eigenmodes, we get the homogeneous equa-
tions for the expansion coefficients. The resonant frequen-
cies are determined by the condition that the determinant
of the coefficient matrix vanishes [7]; that is,

detH=20

(1)

where the matrix element %, (¢, p=1,2,---, N) is given
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Fig. 1. Configurations of shielded dielectric rod resonators of three
types, ie., (2) parallel-plates-image type, (b) parallel-plates-open type,
and (¢) cavny open type.
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(3)

(4)

(5)

qw%,(Zq—l)wE%}. (©6)

In the above, the first and second expressions in { }
correspond to the electric and magnetic 7-plane modes,
respectively. A time factor e/“? is tacitly assumed. Also, ¢
is the light velocity in a vacuum, J,(x) is the Bessel
function of the first kind, and H,(x) is the Hankel func-
tion of the second kind. For u, in (4), a plus sign of the
square root is chosen since the term consisting of J,(u,) in
(2) 1s an even function for u,, while the choice of the plus
or minus signs for v, in (5) will be discussed later. Further-
more, (X,,,Y,) is given as the pth solution of the following
simultaneous equations:

L
{—XcotX,XtanX}=—A7YcotY

- -(fen o

To compute the Q, and Q,, values as well as the
resonant frequencies, we introduce the complex angular
frequency

w=w+ jw, fi=w/27 Qf w1 /2w, (8)

and the complex relative permittivity

é,=¢,(1— jtand)

(9)
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into (1), where f; and Q; are the resonant frequency and
Q-factor for a damped-free oscillation, respectively, and
tan § is the loss tangent of the dielectric. Then, putting
O, = 0, + ju,,, We get

q2>
(wlwz/cz)—(vqlqu/Rz) =0 (10)

from the imaginary part of UZ in (5). Since w, and w, are
both positive, v, and v,, are both positive or both nega-
tive, as seen from (10); that is, the roots 0, exist in either
the first or third quadrant of a complex v plane. Further-
more, the fields outside the rod behave as

ej(o'at—izq?) —_ e—wztequiej(w1t~vqli), F=— (11)
since H,(x)=(2/7x)"?exp(~ jx + jQn+1)m/4) for 1
< x (=10,r). Some considerations of (11) result in the
following: the first quadrant corresponds to a leaky region,
where the fields propagate in the positive r-direction, while
the third quadrant corresponds to a trapped region, where
they propagate in the negatlve r-direction. For v, in (5),
thus, we choose the plus sign when {4 /¢,2h /(2q 1)} >
Ao/2 and the minus sign when {h/q,2h/(2q—1)} <

Ao /2, where A (= c/f,) is the resonant wavelength.

Thus, when {#,2h} > A, /2, at least one of the roots v,
is in the first quadrant; the resonant mode is in the leaky
state, where a part of energy leaks away from the resonator
in the radial direction [7]. On the other hand, when {4, 2h}
< Ao /2, v, for any g value is always in the third quadrant;
the resonant mode is in the trapped state, where the energy
is trapped in and near the rod without radiation [7].
Particularly, the case of { h,2h} = A, /2 represents a cutoff
of the trapped state.

B. Analysis by Perturbation Technique

The technique due to the perturbation theory described
here allows us to separately estimate the Q, and Q, values
from only the computation of resonant frequencies for
structures without radiation. Then consider the real num-
bers for all variables in (1)—~(7), such as « and e,. For the
parallel-plates-type resonators in Fig. 1(a) and (b), the TE,
mode is in the trapped state when {h,2h}<A,/2, as
described above. In this case, the term containing the
Hankel functions in (2) is modified as follows:

Hy(v,) Ky (v) \/(R )2 (wR)2
- - v = —Z, | —|—
v, Hy(v,) v Ky(v)) 7 L ¢
(12)
since v, = — Jv, for any g value, where K,(x) is the

modified Bessel function of the second kind. Furthermore,
for the cavity-open-type resonator in Fig. 1(c), the follow-
ing exchange in (2) is needed [7]:

H,(v,) 5(vy) Ky (08 )= L (0,8 ) Ky (v})
v,Hy(v,) u;[lo(u;)Kl(u;s)+II(U;S)KO(U;)]
(13)

where S=a/R=d/D and I,(x) is the modified Bessel
function of the first kind.
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Following IKajfez’s method, we can compute the Q,
values from

1

ch
2

Q..
2
0. 2. 0,
for Fig. 1(a), (b), and (c), respectively, where
fo ’
( - Afo/AM) 8c
o
 (—Af/AL)S,
f;
(7 A00%, (1)

and Q,,, Q. and @, are ones due to the conductor losses
of the upper and lower plates and of the cylinder, respec-
tively. The resonant frequency f, and the frequency shift
Af, due to the cavity-wall perturbation, such as AM, AL,
or Ad, can accurately be computed from (1). Also, §.=
(mfono)~ /2 is the skin depth of the conductor, where p is
its permeability and o is its conductivity.

In the following, we derive a formula for Q, from the
cavity-material perturbation. Consider a cavity filled par-
tially with dielectric. From the definition of Q ,, at first, we
obtain

1
+ —

ch

1

(14)

QCM =
ch

Qcy =

(16)

since W=2W,+W,) and P,=2wW, tand, where W,
and W, are the electric energy stored in the dielectric and
in the air, respectively, and P, is the average power dis-
sipated in the dielectric. Then, applying a formula for
cavity-material perturbations [9] to this cavity, we obtain

Afy Ae, W,
fo - 2e, W, + W,
from the frequency shift Af, due to the dielectric perturba-

tion Ae, only. Hence, substituting (17) into (16) yields the
following formula for Q ,:

(17)

1 o
" tand (- Af,/A¢,)2¢,

Qq (18)

where the value of — Af, /Ae, also can be computed accu-
rately from (1). Note that (18) is valid for all modes
including the hybrid modes. With (14) and (18), thus, the
unloaded Q, Q,, is given by

1 1

ac + 6; (19)
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Fig. 2. Locations of v, for the parallel-plates-image-type resonator in
Fig. 3, as M is varied. .
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Fig. 3. Computed results of complex frequencies (f;, Q) and measured

results (fy. Q,) for the TEy . 4y,, mode of the parallel-plates-image-
type resonator.

III. COMPUTATIONS AND EXPERIMENTS FOR

PARALLEL-PLATES-TYPE RESONATORS

To verify the validity of these theories, we performed the
computations and experiments for the parallel-plates-type
resonators, using a (Zr-Sn)TiO, ceramic rod with €, = 37.43
and tand = (0.205+0.170f,[GHz])x10~* (Murata Mfg.
Co., Ltd.) and two copper plates with the relative conduc-
tivity of & = 6/a, = 0.92, where 0o, =58%x10° S/m is the .
conductivity of the international standard annealed copper.



1364
100, T d
\
\‘_’ //"/_p/_’/
\1\ [
9.0 \‘??‘_ & Er
‘e Es .
\\_. 77777
§8-0* \(CL
8 ‘S — Theory(d=w Es:1.0)
- \ » Measurement
7.0} {d=150mm ,E5=1.037)
6 0+ \\
Trapped State v leaky State
50 1 l \\\ 1
10°
L Er=37.43 "
Fe tans=(0.205+0170 f(GHz )«10
b D =8.503 mm
| 2L=3-314 mm
103:—
o b
L 2|
- | 51
o Trapped State - Leaky State
bl
2 21 R
10°k u (Qa-Qrag)”
- N
L '
[
!
| )
1 H L
10 0 5 10 15 20
M (mm)

Fig. 4. Computed results of complex frequencies (f;, O;) and measured
results (fy,Q,) for the TE;; mode of the parallel-plates-open-type
resonator.

These values were measured by a dielectric rod resonator
method [10].

At first, the complex frequencies versus the distance M
were computed for the TEy; ;.4 ,, mode of the parallel-
plates-image-type resonator in Fig. 1(a). Fig. 2 shows the
locations of v, in the complex v plane. At M =10 mm, all
v, values lie in the third quadrant (Fig. 2(a)). As M
increases and 4 becomes greater than A, /2, only v, moves
into the first quadrant (Fig. 2(b)). The number of v,’s in
this quadrant increases with M (Fig. 2(c)). The computed
results are shown in Fig. 3 by solid lines. Similar results for
the TE(;; mode of the parallel-plate-open-type resonator
are also shown in Fig. 4. Broken lines in both figures show
the cutoffs. The left-hand side of the cutoff is the trapped
state region while the right-hand side is the leaky state
region. When M passes through the cutoff, the Q, values
rapidly decrease owing to the radiation loss. In Fig. 3,
particularly, a gentle peak of Q, appears near the transi-
tion of v, from the trapped to leaky region. Also, Fig. 5
shows the convergence of the solutions for these resonators
versus the number N of the determinant. The solutions to
three significant figures can be obtained when N =15 for
Fig. 5(a) and N =7 for Fig. 5(b).

The dots in Figs. 3 and 4 indicate the measured values.
An experimental procedure taken is similar to that de-
scribed in [10]. In both cases, the theoretical f, curves
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Fig. 5. Convergence of complex frequencies (f;,Q;) for (a) the
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plates-open-type resonator in Fig. 4.
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Fig. 6. Computed Q values due to the perturbation theory and mea-
sured Q, values for the trapped state TEy @+s)2 mode of the
parallel-plates-image-type resonator.

agree very well with the measured f, values. The theoret-
ical Q, curves in the trapped state, which actually means
Q. are greater than the measured Q, values because the
conductor is supposed to be lossless in this analysis. On the
other hand, the Q, curves in the leaky state, which consist
of 0, and Q_,,, agree well with the measured @, values
because the radiation loss is predominant.

For the same structures as used above, then, the Q_, O,
and Q, values in the trapped state were computed using
the perturbation technique, that is, from (14), (18), and
(19). The respective results are shown in Figs. 6 and 7,
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Fig. 7. Computed Q values due to the perturbation theory and mea-
sured Q, values for the trapped state TEg; mode of the parallel-
plates-open-type resonator.

where the computed f, curves are omitted since they are
identical with the f; curves given in Figs. 3 and 4. The Q,
values computed from (18) agree to within 0.05 percent
with the computed Q, values in the trapped states in Figs.
3 and 4. The Q, values increase rapidly with increasing M.
Also, the computed Q, curves agree well with the measured
Q, values which are reproductions of those in Figs. 3 and
4. Thus, validity of these two techniques was verified.

IV. PossiBILITY OF HIGH-Q DIELECTRIC
RESONATORS

Finally, for the TEy; mode of the cavity-open-type
resonator in Fig. 1(c), the computed results are shown in
Fig. 8. In this computation, we used the optimum dimen-
sions to obtain the best separation of higher order modes
{8]. The f, curve was computed from (1) and the Q curves
were computed by means of the perturbation technique
when & =1.0 (copper), and tan8=10"* and 10~°. When
¢, =37.5 and D =10 mm, the optimum values ar¢ 2L = 4.19
mm, M°=7526 mm, and d=27.0 mm, and then we get
fo = 5.37 GHz. In this case, we obtain @, tand =1.026 and
Q,=1.30x10° since Q. =3.40X10° and Q,, =5.54%
10°. Thus, we obtain Q,=9520 for tand =10"* and also
Q, = 57000 for tan8d =105, For a TE;, empty cavity, on
the other hand, the theoretical maximum Q, value, at-
tained when d = 2h, is 41000 at f;, = 5.4 GHz. As a result,
if low-loss materials with tan8 of nearly 107> are devel-
oped, shielded dielectric resonators will realize the Q,
values higher than those of conductor cavities.

V. CONCLUSION

It is concluded that the two approaches presented are
effective for the separate, accurate estimation of Q-factors
due to the radiation, conductor, and dielectric losses for
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the circularly-symmetric TE, modes of the shielded dielec-
tric resonators. The computed results show that the Q-value
due to the conductor loss increases rapidly as the conduc-
tor is moved away from the dielectric. As a result, a
possibility of realizing high-Q dielectric resonators in the
microwave region was suggested. In addition, a practical
application for such resonators in the millimeter-wave re-
gion also can be expected as suggested by Dydyk [11].
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